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Abstract

Is overparameterization a privacy liability? In this
work, we study the effect that the number of pa-
rameters has on a classifier’s vulnerability to mem-
bership inference (MI) attacks. We first demon-
strate how the number of parameters of a model
induces a privacy–utility trade-off: increasing the
number of parameters generally improves gen-
eralization performance at the expense of lower
privacy. However, remarkably, we then show that
if coupled with proper regularization, increasing
the number of parameters of a model can actually
simultaneously increase both its privacy and per-
formance, thereby eliminating the privacy–utility
trade-off. Theoretically, we demonstrate this curi-
ous phenomenon for logistic regression with ridge
regularization in a bi-level feature ensemble set-
ting. Pursuant to our theoretical exploration, we
develop a novel leave-one-out analysis tool to pre-
cisely characterize the vulnerability of a linear
classifier to the optimal membership inference
attack. We empirically exhibit this “blessing of
dimensionality” for neural networks on a variety
of tasks using early stopping as the regularizer.

1 INTRODUCTION

Recently, the machine learning community has been gravi-
tating towards the trend of increasingly overparameterized
models, which have been shown both theoretically [1–3]
and empirically [4, 5] to generalize better than their smaller
counterparts in diverse settings. These findings encourage
machine learning system designers to opt for the largest
possible model to maximize performance on unseen data.

However, when training machine learning models on sensi-
tive data [6–8], it is also crucial to understand the attendant
privacy issues to prevent data leaks. Alarmingly, multiple at-

tacks have been developed in the literature to perform mem-
bership inference (MI), which extracts information about
specific examples in a model’s training dataset, even when
given only black-box access [9–11].

Is the trend of increasingly overparameterizing models detri-
mental to privacy? In this paper, we focus on the effect that
the number of parameters of a model has on its vulnerability
to MI attacks. We study this problem both theoretically and
empirically.

We first demonstrate a parameter-wise privacy–utility trade-
off: increasing the number of parameters of a model in-
creases its generalization performance while also increasing
its vulnerability to MI attacks. We show this theoretically
for logistic regression and empirically for support vector
machines and neural networks. This corroborates previous
empirical [9, 12] and theoretical [13] findings that larger
models are less private.

However, we then show that this is not the end of the story
between overparameterization and privacy. Remarkably,
we discover that if proper regularization is incorporated
while increasing the number of parameters, the larger model
can actually enjoy greater privacy (stronger protection from
MI attacks) for the same generalization performance as its
smaller counterpart. That is, there is a “blessing of dimen-
sionality,” rather than a curse, and more overparameterized
models can in fact be more private when paired with regu-
larization. We show this behavior theoretically for logistic
regression with ridge regularization and empirically for neu-
ral networks with early stopping.

This behavior is due to the fact that regularization induces
its own privacy–utility trade-off: beyond a point, increasing
regularization provides greater protection from MI attacks
while decreasing generalization performance. However, the
trade-off induced by regularization for a larger network
traces a trajectory of lower MI vulnerability and better gen-
eralization performance than the trade-off for a smaller net-
work. That is, larger networks have better regularization-
wise privacy–utility trade-offs.

To demonstrate this effect theoretically, we must be able to
precisely characterize the output distribution of a model on
a fixed training data point over the randomness of all other
training data. We overcome this challenge by developing
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a novel leave-one-out analysis tool based on the convex
Gaussian min-max theorem [14, 15] that we apply to high-
dimensional logistic regression in the asymptotic regime.
We believe our theoretical tool may be of independent in-
terest to other researchers pursuing theoretical studies of
privacy for machine learning models. In this work, we use
our tool to provide a precise asymptotic characterization of
MI for the optimal black-box MI attack.

For the practitioner, our analysis encourages considering the
number of parameters when designing privacy-preserving
machine learning models. In particular, larger models may
be more beneficial as long as they are carefully coupled with
proper regularization. In summary, our paper has three core
contributions:

1. We demonstrate how individually increasing either the
number of parameters or decreasing the regularization
of a classification model decreases its privacy.

2. We discover that wider NNs enjoy an improved
regularization-induced privacy–utility trade-off com-
pared to narrow ones, and that, controlling for the pri-
vacy level by regularization, increased generalization
performance due to overparameterization is not at
odds with privacy.

3. We theoretically analyze high-dimensional logistic re-
gression in the asymptotic regime and replicate our
empirical NN observations for a bi-level feature en-
semble using a novel leave-one-out analysis that may
be of independent interest. Using this tool, we also
prove the fundamental MI vulnerability for overparam-
eterized logistic regression models.

Related Work. This work contributes to the rapidly grow-
ing field of membership inference (MI), a framework being
increasingly used to study the privacy implications of ma-
chine learning models. Previous works have shown how MI
is in principle a task of hypothesis testing with the optimal
adversary being the likelihood ratio test (LRT) [16, 17, 13].
We leverage this optimal LRT adversary in our theoretical
analysis and in our SVM experiments. Since the distribu-
tions for the LRT are typically not known for general mod-
els such as neural networks, more practical attack strategies
such as binary classification [11, 18] and perturbation-based
inference [19, 20] have been proposed. We refer the reader
to [21] for a comprehensive survey of MI attacks. For our
neural network experiments, we use the loss thresholding
attack introduced by [22] and improved by [23] due to its
simplicity and effectiveness.

Prior work has also studied how various types of regular-
ization affect MI attacks [13, 24–28]. There are limited
studies on the effect of overparameterization on MI. [13]
analyze how linear regression models are more susceptible
to MI as they become more overparameterized, and [9, 12]

empirically observe larger language models being more vul-
nerable to MI than their smaller counterparts. [22] study
the theoretical connection between overfitting and member-
ship advantage but do not connect this to the number of
parameters.

In addition to MI, differential privacy (DP) is another pop-
ular framework used to study the privacy implications of
machine learning algorithms [29–31]. Differentially pri-
vate training algorithms ensure that models obtained when
training on datasets differing in one data point do not differ
much. [32, 33] show that larger models achieve better utility
for the same DP amount when using fine-tuning, echoing
our message that larger models have better privacy–utility
trade-offs than smaller ones. By providing rigorous worst-
case guarantees, DP also protects models from MI attacks
[22], but typically at the cost of having very low utility [34–
36]. Indeed, it has been shown that DP techniques provide
poorer MI defense vs. utility trade-offs than other MI de-
fense schemes [20, 37]. Furthermore, while they provide
powerful information-theoretic guarantees, it is not clear
how the DP metrics of (ϵ, δ) translate to vulnerability from
real-world MI attacks. As such, we believe both MI and DP
analyses complement each other in providing a comprehen-
sive understanding of privacy-preserving machine learning,
and we focus on MI in this work.

Our work is strongly related to the “double descent“ litera-
ture that studies the relationship of overparameterization and
generalization error [38]. [4] demonstrate double descent
behavior in neural networks as a function of the number of
parameters and number of training epochs. To theoretically
understand the trade-off between generalization error and
an adversary’s MI accuracy, we study the popular “bi-level
ensemble” model that has been shown to exhibit benign
overfitting in classification [39, 40]. To characterize the dif-
ference of predictions on training points and test points, we
leverage the proportional asymptotics regime, where precise
analysis is enabled by tools such as the convex Gaussian
min-max theorem [14] and approximate message passing
[41–43]. In particular, we build upon [15] to analyze the
behavior of logistic regression in the asymptotic regime.

2 THEORETICAL FOUNDATIONS OF
MEMBERSHIP INFERENCE

We define our MI problem for classification as follows.
Let S = ((xi, yi))

n
i=1 be a training dataset of features

xi ∈ X ⊆ Rp and labels yi ∈ Y = {1, . . . , k} (i.e., multi-
class classification). We assume that each data point and its
associated label is an independent sample from a distribu-
tion D over the data such that S ∼ Dn. Furthermore let F
denote a class of machine learning models (e.g., linear mod-
els or neural networks) such that for f ∈ F , f : X → Rk,
producing a vector of confidence values from which the
the final prediction is given as ŷ(x) = argmaxj [f(x)]j .
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Figure 1: Loss gap increases with epochs. Empirical histograms of log cross-entropy losses for training and non-training
data points of 20 ResNet18s (w = 64) trained on CIFAR10 for different training epochs. While both distributions generally
shift towards smaller losses with more epochs, the losses for training points shift at a quicker rate than those for non-training
points, enabling loss-threshold attacks. The optimal threshold is depicted with the red dashed line. This illustrates why
loss threshold MI accuracy increases with epochs (Figure 4). For visualization purposes, we drop points that achieve 0 (to
machine precision) loss.

For each pair (x, y), we have access to a loss function
ℓ : Y × Rk → R≥0 that measures the performance of
any f ∈ F on the data S. The model’s test (misclassifi-
cation) error is defined as E(f) = Pr (y ̸= ŷ(x)), where
(x, y) is drawn from D for our theoretical results or from
the test set for our experiments. Finally, let A be a MI
adversary. For a fixed model f ∈ F trained on S, we as-
sume that A : F × X × Y → {0, 1} has access to f and a
sample (x, y) and predicts 1 if it believes (x, y) ∈ S and 0
otherwise. To be rigorous, we define MI as the following
experiment [22, 13].

Experiment 1. Given distribution D, model class F , loss
function ℓ, and adversary A, a membership inference exper-
iment is

1. Sample S ∼ Dn.

2. Learn f̂ ∈ argminf∈F
∑n

i=1 ℓ(yi, f(xi)).

3. Sample m ∈ {0, 1} uniformly at random.

4. If m = 0, sample a new test data point (x, y) ∼ D.
If m = 1, sample a training data point (x, y) ∈ S
uniformly at random.

5. Observe the adversary’s prediction A(f̂ ,x, y).

In essence, Experiment 1 reduces the problem of MI to
one of hypothesis testing. Accordingly, we quantify the
performance of an adversary in terms of its membership
(inference) advantage, defined as the difference between the
true positive rate and the false positive rate.

Definition 1 ([22]). The membership advantage of an ad-
versary A against f̂ is

Adv(A) = Pr(A(f̂ ,x, y) = 1 | m = 1)

− Pr(A(f̂ ,x, y) = 1 | m = 0), (1)

where Pr(·) is taken jointly over all randomness in Experi-
ment 1.

Membership inference can be performed successfully when
the model treats points from the training dataset S “differ-
ently” than new test points. More precisely, if the distri-
bution of the model’s output on a data point (x, y) differs
significantly when (x, y) is a training point vs. when it is
not, then MI attacks can distinguish between the two dis-
tributions to determine if m = 0 or m = 1. Indeed, we
observe in Figure 1 that as a model trains on data, its loss
on those data points decreases at a rate faster than its loss
on non-training data points. Then, even an attack as simple
as thresholding the loss (A(f,x, y) = 1 {ℓ(y, f(x)) < τ})
[22, 16, 23] can successfully perform MI.

In this work, we consider black-box adversaries, which
only have access to the data point (x, y) and the model’s
output f̂(x) rather than the whole model itself. Our theoret-
ical analysis employs the likelihood ratio test (LRT) attack,
which is the optimal black-box MI adversary [16, 17, 13].
Given (x, y) and f̂(x), the LRT adversary outputs 1 if the
likelihood of the model outputting f̂(x) is higher if (x, y)
was a training point than if it was not a training point.

2.1 Analysis Framework and Core Theoretical Result

To theoretically analyze MI, we consider a regularized high-
dimensional logistic regression setting. We define the logis-
tic loss ℓ(y, z) = ρ(z)− yz in terms of the function ρ(z) =
log(1+exp(z)) whose derivative ρ′(z) = 1/(1+exp(−z))
is the sigmoid function. We let xi ∼ N (0, 1

pΣ) for some
positive definite covariance matrix Σ ∈ Rp×p, and for
ground truth coefficients β∗ ∈ Rp, binary labels yi ∈ {0, 1}
are generated such that Pr(yi = 1|xi) = ρ′(x⊤

i β
∗). Our

learned decision function is f̂(x) = x⊤β̂, yielding predic-
tions ŷ(x) = 1{f̂(x) > 0}, where

β̂ = argmin
β

1

n

n∑
i=1

ℓ(yi,x
⊤
i β) +

λ

2p
∥β∥22. (2)
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We then consider the asymptotic limit as n, p → ∞ with
n/p → δ ∈ (0,∞). This enables us to apply the analysis
of [15], who used the convex Gaussian min-max theorem
(CGMT) [14] to completely characterize the generalization
performance of logistic regression in terms of the solution
to a nonlinear system of equations of a few scalar variables;
see Appendix B.2 for details.

The challenge in studying MI is that we must addition-
ally characterize the difference between the distributions of
model outputs for training points and test points. Existing
analyses from frameworks such as the CGMT are insuffi-
cient to give us the distributions of the outputs for a single
training point over the randomness of the remaining training
dataset, which we need in order to study the LRT adversary
[13]. Therefore, we provide a novel leave-one-out-based
characterization of the distribution of the output of a lin-
ear model for any specific training point. The following
result is an informal statement of a more detailed version in
Appendix C.
Theorem 1 (informal version of Theorem 5). Consider
the solution β̂ to the optimization problem in (2). There
exists γ > 0 such that in the limit as n, p → ∞ with
n/p → δ ∈ (0,∞), for any training point xi,

x⊤
i β̂

d−→ Proxγℓ(yi,·)

(
x⊤
i β̂−i

)
, (3)

where β̂−i is the solution to (2) with (xi, yi) omitted from

the training set, and d−→ denotes convergence in distribution
where the randomness is over the other n−1 training points.

That is, the distribution of the model output for a training
point is simply the distribution of the proximal operator
(defined in Appendix B.1) of the loss function applied to the
output of the training point as if it was a new test point. This
will drive the loss closer to zero for training points than for
new test points, and so as discussed above, an adversary can
exploit this difference to perform MI.

We strongly believe this theoretical tool to be of independent
interest, opening the door to future theoretical study of
privacy in high dimensional linear models, in particular
with sharp asymptotics for any given adversary rather than
simply worst-case bounds. Our proof strategy is general and
applies to general convex losses and regularization penalties,
as we describe in Appendix C. A particularly exciting open
question for future work is determining what types of losses,
regularization, and feature distributions can lead to a small
γ such that the resulting model is the most private.

2.2 A Bi-level Feature Ensemble

In order to study the trade-off between accuracy and pri-
vacy as a function of overparameterization in machine learn-
ing models, we need a setting in which benign overfitting
occurs—that is, that as we increase the number of parame-
ters of our model, generalization accuracy increases as well.

To that end, we define a bi-level feature ensemble similar to
that considered in [39, 40]. In this model, we define Σ and
β∗ for some d < p and η > 0 as

[Σ]2k,k′ =


p
d if 1 ≤ k = k′ ≤ d,
ηp
p−d if d < k = k′ ≤ p,

0 if k ̸= k′,

β∗
k ∼

{
N (0, σ2

β) if 1 ≤ k ≤ d,

0 if d < k ≤ p.

(4)

In this way, there is always a total variance of 1 in the
first d features and of η in the tail of p − d features. As
ϕ = p/d → ∞, this model is known to exhibit benign
overfitting [40].

The intuition behind this feature model is that the signal
β∗ is fundamentally low dimensional and is aligned with a
small subset of d highly representative features. Meanwhile,
there are an abundance of nuisance features of very small
magnitude that are uncorrelated with the signal, such that
they can absorb label noise [44] without adversely affecting
prediction on new examples with uncorrelated nuisance
features. In this way, training points can achieve perfect
accuracy even under noise while the model still generalizes
well. Furthermore, nonlinearities like those used in neural
networks are known to add a similar low-magnitude tail
of nonzero eigenvalues to the feature covariance in their
Gaussian equivalents [2, 45], connecting this feature model
with realistic models like neural networks.

2.3 Asymptotic Privacy and Utility

Given the framework of the CGMT [15], we can easily
determine the asymptotic generalization error for logistic
regression. Thanks to Theorem 1, we can also determine the
MI advantage given an adversary A. The following corollary
captures these results, specializing the MI advantage to that
of the worst-case optimal LRT adversary.

Corollary 2. Consider the bi-level feature ensemble in (4)
and the decision function f̂(x) = x⊤β̂ for β̂ solving (2).
Then there exist α, γ, σ > 0 such that, in the limit as p → ∞
with n/p → δ ∈ (0,∞),

(i) Generalization error. The misclassification error for a
new test pair (x, y) is given by

E(f̂) = E
[
ρ′(Z)Φ(−αZ

σ )
]
, (5)

where Φ is the standard normal CDF and Z ∼
N (0, σ2

β);

(ii) Membership advantage. For any training pair (xi, yi),
the membership advantage of the optimal adversary is
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Figure 2: Privacy vs. parameters (SVMs). We demonstrate on SVMs for a variety of feature models how increasing
overparameterization increases the adversary’s MI advantage on the SVM model even as it decreases validation error. Thus,
the number of parameters induces a privacy–utility trade-off.

given by

max
A

Adv(A, f̂ ;xi, yi)

= 1
σ

∫
R
max

{
Φ′( z−αx⊤

i β∗+γ(ρ′(z)−yi)
σ

)
(1+γρ′′(z))

− Φ′( z−αx⊤
i β∗

σ

)
, 0
}
dz, (6)

where Φ′ is the standard normal PDF.

It is not possible to determine closed-form expressions for
(α, γ, σ) in terms of the parameters (ϕ, η, σβ) of the bi-
level feature ensemble in general, as the former are the
solutions to a system of nonlinear equations (see Theorem 4
in Appendix B.2). This makes direct theoretical analysis of
the privacy–utility trade-offs difficult.

However, we can obtain the values (α, γ, σ) by solving
the nonlinear system numerically. In the next sections,
when we plot theoretical trade-off curves for logistic re-
gression, we solve the nonlinear system and then evalu-
ate the above expressions using numerical integration, re-
porting the average sample-specific membership advantage
E(xi,yi)∼D[maxA Adv(A, f̂ ;xi, yi)]. We refer the reader
to Appendix E for proof details for Corollary 2 and Ap-
pendix F for simulations that verify our computations of the
sample-specific training and test densities.

3 INDIVIDUAL PRIVACY–UTILITY
TRADE-OFFS

We now demonstrate that there are privacy–utility trade-offs
as a function of either the number of model parameters or the
amount of regularization, individually. Specifically, when
either increasing the number of parameters or decreasing
the amount of regularization from an over-regularized state,
the resulting machine learning model generally becomes
more accurate (improved generalization performance) but
becomes less private (higher MI advantage of the adver-
sary). The increase in accuracy with overparameterization
has been discussed in detail in the double descent literature,

and we refer readers to [46, 4, 38]. The decrease of privacy
with overparameterization on MI has been observed for lin-
ear regression models in [13], but we show here that the
phenomenon is robust, extending to classification models
and even highly nonlinear models such as deep neural net-
works. We show the parameter-wise and regularization-wise
tradeoffs experimentally on various machine learning tasks
and provide some theoretical insights to their origins. All
experimental details not included in the main text can be
found in Appendix G. In all neural network plots, shaded
areas indicate one standard deviation over repeated trials.

3.1 Parameter-Wise Privacy–Utility Trade-Off

We begin our demonstration with an empirical look at sup-
port vector machines (SVMs), ploting both an adversary’s
membership advantage and the SVM model’s validation
error as a function of the number of parameters in Figure 2
for a variety of data models. We observe how MI increases
(thus damaging privacy) while test error decreases (yield-
ing a more accurate model) as the number of parameters
grows. We consider data models based on those that have
been shown to exhibit double descent in the overparameter-
ized machine learning literature, including the weak features
ensemble from [39], separable Gaussians with irrelevant fea-
tures (based on synthetic dataset 1 of [47]), random ReLU
features [48], and random projections on two classes of CI-
FAR10. For the MI attack, we estimate the optimal LRT
adversary [13] by approximating the model output distribu-
tions as discrete histograms using Monte Carlo sampling
over a minimum of 20,000 trials.

In Figure 3, we demonstrate that the same phenomenon oc-
curs in NNs. Specifically, we consider NNs that are trained
with optimal (with respect to validation error) early stopping:
we stop training at the number of training epochs that maxi-
mizes validation accuracy. We consider three machine learn-
ing tasks: feature vector classification on the Purchase100
dataset [11] using a 2-layer NN, image classification on
CIFAR10 [49] using the ResNet18 architecture [50], and
language translation on the Multi30K dataset [51] using the
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Figure 3: Privacy vs. parameters (NNs and theory). For NNs trained to optimal early stopping with respect to validation
error, increasing the network’s width generally increases MI advantage on the network even as it decreases its test error. We
see a similar effect for logistic regression with the bi-level ensemble theoretically when λ is tuned to minimize test error.

Transformer architecture [52]. We control the number of
parameters of the networks by scaling the size of the hidden
dimensions by a width parameter w. The MI attack we
employ is the sample-specific loss threshold attack (“attack
R” in [23]): A(f,x, y) = 1 {ℓ(y, f(x)) < τ(x, y)}, where
τ(x, y) is a sample-specific threshold learned for each data
point over reference/shadow models.

Theoretical Insights. Using our theoretical tool from The-
orem 1, we can in fact prove that for an extremely broad
class of settings, including the bi-level ensemble which
exhibits benign overfitting, extreme overparameterization
leads to perfect MI by any loss-thresholding adversary. We
capture this result in the following theorem. We have omit-
ted some technical conditions related to the convergence of
a system of fixed point equations for the statement of part
(a); please see Theorem 6 in Appendix D for precise details.
In the theorem statements, we assume all scalar variables
(such as λ and η) to be fixed unless otherwise specified.

Theorem 3. If f̂(x) = x⊤β̂ for β̂ the solution to (2)
and for some τ > 0 we have an adversary A(f,x, y) =
1 {ℓ(y, f(x)) < τ}, then as n, p → ∞ with n/p → δ ∈
(0,∞),

(a) If limp→∞
∥∥Σ1/2β∗

∥∥
2
/
√
p exists and is finite, and

lim infp→∞ λmin(Σ) > 0, where λmin(Σ) is the
smallest eigenvalue of Σ, then as δ → 0, Adv(A) →
1.

(b) For the bi-level ensemble in (4), if p/d → ϕ ∈ (1,∞)
and d/n converges to a fixed value, then as ϕ → ∞,
Adv(A) → 1, and in the limit as λ → ∞, E(f̂) is
decreasing in ϕ.

This theorem highlights that as δ → 0, which means that
the model becomes increasingly overparameterized, any
constant-threshold adversary’s MI advantage converges to
1, and the adversary can perform perfect MI attacks on the
learned model. We emphasize that the constant-threshold
adversary is much weaker than the sample-specific loss

threshold adversary we consider in our experiments, and it
need not be adapted to the problem in any way, yet overpa-
rameterized models are still vulnerable. This is true regard-
less of any (fixed) value of regularization strength, meaning
that ridge regularization is not sufficient to protect against
MI attacks, echoing what was observed by [13] in linear
regression. This result applies not only to standard isotropic
data covariances, but also to highly anisotropic covariances
such as the bi-level ensemble.

Part (b) highlights how in the right circumstances, we
can still see generalization performance improving with
overparameterization—that there is a trade-off between gen-
eralization and privacy, just as in our experimental results.
We illustrate this alongside neural networks in Figure 3 for
the bi-level model with fixed n/d = 5, σβ = 10, and η = 1,
with λ tuned to minimize test error, analogously to the opti-
mal validation error early stopping in the NN experiments.
This plot is generated using the expressions in Corollary 2
for test error and the optimal adversary’s MI advantage. We
see that the generalization error decreases but the adver-
sary’s MI advantage increases as the length of the tail of
small eigenvalues of Σ increases for larger values of ϕ.

3.2 Regularization-Wise Privacy–Utility Trade-Off

Using the same classification tasks and NN architectures
as in Section 3.1, we empirically demonstrate an epoch-
wise privacy–utility trade-off in Figure 4, where we plot the
adversary’s MI advantage and the model’s generalization
error as a function of training epochs. Stopping the training
at earlier epochs corresponds to higher regularization, as the
model has less opportunity to overfit to training data. We
include a variety of NN widths in our plot, demonstrating
similar trade-offs across widths.

We also plot the theoretical test error and MI advantage
from Corollary 2 for logistic regression with the bi-level
feature ensemble as a function of the regularization strength.
Specifically, we plot the regularization as a function of 1/λδ,
where λ is the ℓ2 regularization parameter, such that smaller
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Figure 4: Privacy vs. regularization. Regardless of neural network width (parameterized by w), increasing the number
of training epochs (decreasing regularization) increases the adversary’s MI advantage (solid line) while simultaneously
decreasing its test error (dashed line). This induces a regularization-wise privacy–utility trade-off. The same holds
theoretically for logistic regression when decreasing ridge regularization under the bi-level feature ensemble setting.

values of 1/λδ correspond to more regularization. Just
as we explore a variety of widths for NNs, we consider a
variety of values of ϕ = p/d, measuring the amount of
overparameterization for the bi-level feature ensemble.

An interesting observation from Figure 4 is that the ad-
versary’s MI advantage can continue to increase even if
test error stays the same. Thus, generalization error does
not completely characterize MI. Instead, what leads to the
increase in MI advantage is the increasing generalization
(cross-entropy) loss gap. As the network is trained for more
epochs, or the logistic regression model is less regularized,
its training loss decreases at a greater rate than its test loss.
Thus, it becomes easier to divide the training and test losses
with a loss threshold, as illustrated in Figure 1. The losses
continue separating even after test error has converged, caus-
ing the MI advantage to continue to increase.

4 A BLESSING OF DIMENSIONALITY:
ELIMINATING THE
PRIVACY–UTILITY TRADE-OFF

We now show that, perhaps counter-intuitively, if we jointly
tune both the numbers of parameters and the amount of
regularization, we can eliminate the privacy–utility trade-
off. The main idea is to increase the number of parameters
while also increasing the regularization appropriately.

Our key observation is that the decrease in the model’s
generalization error and the increase in an adversary’s MI
advantage occur at different rates during training for NNs
of different widths (recall Figure 4). However, it is difficult
to compare these rates across different NN widths when
privacy and utility are individually plotted against regular-
ization. Hence, we plot parametric curves for varying widths
as a function of regularization (epochs for NNs, and ridge
penalty for logistic regression) in a privacy–utility plane in
Figure 5, which enables us to abstract away the regulariza-
tion strength and compare trade-off curves across widths
directly. In the plot, ideal performance is the lower-left cor-

ner, as this represents low MI advantage (high privacy) and
low test error. In this representation, the story becomes clear:
wider networks can induce better privacy–utility trade-offs.
That is, they are both below and to the left of the trade-off
curves for narrower networks. The same occurs for theo-
retical logistic regression with the bi-level ensemble. Thus,
increased parameterization is not inherently a privacy li-
ability and can instead actually improve the privacy of a
model.

We explicitly show how early stopping (with the appropriate
stopping rule) eliminates the privacy–utility trade-off for
overparameterization in Figure 6. If we tune the number of
training epochs for each width such that a fixed MI advan-
tage is reached (which takes fewer epochs for larger widths),
then we see from Figure 6a that overparameterization only
decreases the generalization error. Similarly, tuning the
number of epochs to a fixed validation error results in a
decrease of the adversary’s MI advantage with increasing
width, as shown in Figure 6b. In essence, either privacy or
improved generalization can be obtained without taking a
hit in the other by opting for a larger network with proper
regularization. While we do not recommend early stopping
alone as a sufficient privacy-preserving mechanism (prac-
titioners should likely also consider the wide collection of
existing MI defense schemes), this strongly suggests that
practitioners should include wider networks in their model
search and then tune their regularization appropriately to
achieve a desired level of privacy.

In Appendix H, we include additional experiments that we
could not include in the main paper for space reasons, in-
cluding a version of Figure 6 for Transformers on Multi30K,
repeating all of the experiments in Figures 3–6 for global
loss thresholding attacks, and the MI vs. test error trade-off
for networks trained with DP-SGD [31] on CIFAR10. In all
cases, we see the same behavior—when the regularization is
tuned for MI, larger models achieve better protection from
MI and better classification accuracy than smaller models.
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same holds theoretically for logistic regression in the bi-level feature ensemble sweeping through the ridge penalty.
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Figure 6: Overparameterization with early stopping eliminates the privacy–utility trade-off. (a) For each network
width, we train the network until it reaches a given MI advantage value. We then plot the test error of the networks. Observe
how test error decreases with parameters at a fixed MI advantage value, showing how proper tuning of parameters and
epochs together improves model accuracy without damaging its privacy. Thus, this eliminates the privacy–utility trade-off.
(b) Same as (a) but switching the roles of MI advantage and test error.

5 DISCUSSION

We began this exploration with a question: is overparameter-
ization a privacy liability? In our theoretical and empirical
investigation, we have demonstrated that overparameteri-
zation can be a privacy risk, but that it need not be, and
that, in fact, it often provides even greater privacy when
coupled with appropriate regularization. To the best of our
knowledge we have provided the first study of this effect in
the context of membership inference.

While we showed how ridge regularization for logistic re-
gression and early stopping for neural networks bring out
this blessing of dimensionality, many other types of regular-
ization are used in practice. For one example, we include
a preliminary experiment using DP-SGD [31] in Figure 13
in Apppendix H, for which we also observe wider networks
having better trade-offs. However, not every regularizer
may induce the same effect, and an interesting open re-
search direction is to discover which types of regularization
or other learning techniques can draw out even more pri-
vacy benefits from large models. For example, in the field
of differential privacy, by fine-tuning pre-trained language

models, [32, 33] achieve better accuracy with larger models
than smaller ones for the same privacy budget. A nascent
regularization approach strongly worth further study is net-
work pruning, which has been observed to be an effective
defense against membership inference attacks [26] as well
as a vulnerability in some settings [53].

The phenomenon of better privacy–utility trade-offs for over-
parameterized models also has important takeaways for our
general understanding of the benefits of overparameteriza-
tion. As we have shown, highly overparameterized models
not only have more capacity to memorize than smaller net-
works (which leads to increased risk of MI), but they also ap-
pear to learn the underlying structure of the data even more
quickly than they memorize data. Identifying the mechanism
that provides this benefit in overparameterized models and
developing appropriate measures for an “effective” num-
ber of parameters that reflects the memorization capacity
of the model as a function of both the true number of pa-
rameters and forms of regularization are important open
questions. We believe our leave-one-out characterization of
the training output distribution in Theorem 1 will be helpful
in answering these questions with respect to privacy.
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A Limitations and Considerations

A.1 Limitations of this work

A possible limitation of this work is that we focus on a particular class of inference attacks, the loss threshold attack, in most
of our experimental results, though we note that as [16] and [13] both argue, the loss threshold attack is essentially optimal
for membership inference for many data distributions. More subtly, the procedure we propose for estimating membership
inference vulnerability involves computing an empirical estimate. As such, there is uncertainty in this process. In practical
settings where the training and validation sets are large, this is likely not a major concern. That said, in settings where the
privacy budget is very low and/or privacy is paramount it may additionally be necessary to use high-probability bounds on
the adversary’s MI advantage rather than the estimate directly for an added layer of security. Furthermore, the theoretical
guarantees are in the asymptotic regime. While they show a strong correlation with finite dimension experiments (e.g.,
Figure 4), developing tight, non-asymptotic results is an open question. [40], for instance, is able to derive non-asymptotic
guarantees to connect generalization error to overparameterization, but the same technique does not apply in the case of
membership inference: it is important to consider the distribution of the model’s output for specific inputs—not just the
population on average.

A.2 Ethical Considerations

Ensuring that models protect the data that they are trained on is important for modern machine learning systems. In order to
achieve benign overparameterization for membership inference and generalization error jointly, we perform precise tuning
and early stopping. When implementing these ideas in practical scenarios, it is recommended that a sensitivity analysis
additionally be conducted to ensure that the chosen parameters are sufficiently tight. Without doing so, applying this method
may lead to false confidence in a method’s robustness to MI attacks. In general, the authors believe that in settings where
privacy is of the utmost concern, such as when training with medical data, additional measures beyond those covered in
this work should be taken to ensure that the data stays private. Finally, this paper focuses on membership inference in
particular and these results are not as general as complete differential privacy. Practitioners should consider additional
privacy vulnerabilities beyond membership inference alone.

B Background material

Here we include a few definitions and results borrowed from other works.

B.1 Definitions

We define the proximal operator for a function Ω as follows.

Definition 2 (Proximal operator). The proximal operator of a function Ω: Rp → R is defined as

ProxΩ (v) = argmin
w∈Rp

Ω(w) +
1

2
∥w − v∥2. (7)

It will be valuable to consider the first-order optimality condition of the proximal operator; for differentiable penalties, the
minimizer w∗ satisfies

∇Ω(w∗) +w − v = 0. (8)
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For our work, we will need the form of the scalar proximal operator for Ω(v) = 1
2∥Av∥22 for symmetric A ∈ Rp×p, which

for t > 0 is given by

ProxtΩ (v) =
(
Ip + tA2

)−1
v. (9)

We also have the definition of local Lischitzness from Salehi et al. [15].

Definition 3 (Locally Lipschitz). A function Φ: Rd → R is said to be locally Lipschitz if ∀M > 0, ∃LM ≥ 0, such that
∀x,y ∈ [−M,+M ]d, |Φ(x)− Φ(y)| ≤ LM∥x− y∥.

B.2 Fixed point equations for logistic regression

We borrow the following theorem (slightly adapted to our notation) from Salehi et al. [15].

Theorem 4 (Theorem 1 of Salehi et al. [15]). For training data xi
i.i.d.∼ N (0, 1

pIp) and yi ∼ Bernoulli(x⊤
j β

∗), consider
the optimization program

β̂ = argmin
β∈Rp

1

n

n∑
i=1

ℓ(yi,x
⊤
i β) +

λ

p
Ω(β), (10)

where ℓ(y, z) = ρ(z)− yz for ρ(z) = log(1 + exp(−z)) is the logistic loss, and Ω: Rp → R is a convex regularization
function. Consider also the following nonlinear system

κ2α =
1

p
β∗⊤ProxλστΩ

(
στ(θβ∗ +

r√
δ
g)

)
,

γ =
1

r
√
δp

g⊤ProxλστΩ

(
στ(θβ∗ +

r√
δ
g)

)
,

κ2α2 + σ2 =
1

p

∥∥∥∥ProxλστΩ(στ(θβ∗ +
r√
δ
g)

)∥∥∥∥2
2

,

γ2 =
2

r2
E
[
ρ′(−κZ1)

(
καZ1 + σZ2 − Proxγρ (καZ1 + σZ2)

)2]
,

θγ = −2E
[
ρ′′(−κZ1)Proxγρ (καZ1 + σZ2)

]
,

1− γ

στ
= E

[
2ρ′(−κZ1)

1 + γρ′′
(
Proxγρ (καZ1 + σZ2)

)] ,

(11)

where g ∼ N (0, Ip) is independent of β∗ and Ω, and Z1 and Z2 are independent standard normal variables. Assume that
as p → ∞, n/p → δ, ∥β∥2/

√
p → κ, and that the system in (11) has a unique solution (ᾱ, σ̄, γ̄, θ̄, τ̄ , r̄). Then, as p → ∞,

for any locally-Lipschitz function Ψ: R× R → R, we have

1

p

p∑
j=1

Ψ(β̂j , β
∗
j )

p−→ 1

p

p∑
j=1

Ψ([Γ(β∗,g)]j , β
∗
j ), (12)

where Γ(v, z) = Proxλσ̄τ̄Ω

(
σ̄τ̄(θ̄v + r̄√

δ
z)
)

.

The astute reader may note that Salehi et al. [15] require separable regularizers and drawing β∗ element-wise i.i.d. from
some distribution, but that neither of these are required for their proof technique to go through, so we have stated the more
general result here, as we will need both of these assumptions to be relaxed.

C Leave-one-out analysis for membership inference

In order to study MI attacks, we need to understand how the distribution of training points differs from test points. We prove
the following result to this end for logistic regression with a ridge penalty; however, the proof strategy is general and applies
readily to other losses and penalties for general linear models that admit a result similar to Theorem 4, which includes many
common models in machine learning [14, 41, 42].
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Theorem 5. Consider the solution β̂ to the optimization problem in (2). Let β̃∗ = Σ1/2β, x̃i = Σ−1/2xi, and Ω̃(β̃) =
1
2∥Σ−1/2β̃∥22. Assume Theorem 4 holds for β̃∗ in place of β∗ and Ω̃ in place of Ω. Then for any training point xi,

x⊤
i β̂

d−→ Proxγ̄ℓ(yi,·)

(
x⊤
i β̂−i

)
, (13)

where γ̄ is from the result of Theorem 4, and

β̂−i = argmin
β∈Rp

1

n

n∑
i′ ̸=i

ℓ(yi′ ,x
⊤
i′β) +

λ

2p
∥β∥22. (14)

Proof. We first make a leave-one-out modification the optimization problem for a general loss and regularizer:

β̂ = Σ−1/2 · argmin
β̃

1

n

n∑
i′ ̸=i

ℓ(yi′ , x̃
⊤
i′ β̃) +

λ

p
Ω(β̃), (15)

where

Ωi(β̃) = Ω̃(β̃) +
1

λδ
ℓ(yi, x̃

⊤
i β̃). (16)

Applying Theorem 4 to this problem, the solution is equivalent to one of the form

β̂equiv = Σ−1/2 · Prox
tΩi

(
aβ̃∗ + bg

)
, (17)

where t = λσ̄τ̄ , a = σ̄τ̄ θ̄, and b = σ̄τ̄ r̄/
√
δ. This proximal operator is the solution w∗ to the equation

t∇Ω̃(w∗) +
t

λδ
ℓ′(yi, x̃

⊤
i w

∗)x̃i +w∗ − (aβ̃∗ + bg) = 0, (18)

where ℓ′(yi, z) = ∂ℓ(yi, z)/∂z. Note that this is equivalent to

w∗ = Prox
tΩ̃

(
aβ̃∗ + bg − t

λδ
ℓ′(yi, x̃

⊤
i w

∗)x̃i

)
. (19)

Here we specialize to the ridge penalty, but this can be extended to separable regularizers with careful application of Stein’s
lemma. Plugging in the form of the proximal operator for generalized ridge penalties, we have

w∗ = Σ (Σ+ tIp)
−1

(
aβ̃∗ + bg − t

λδ
ℓ′(yi, x̃

⊤
i w

∗)x̃i

)
. (20)

We wish to characterize x⊤
i β̂, which is equivalent to characterizing x⊤

i β̂equiv = x̃⊤
i w

∗. Firstly, we note that for any random
vector u such that ∥u∥22/

√
p → Cu < ∞ that is independent of x̃i,

1

p
u⊤w∗ p−→ 1

p
u⊤Σ (Σ+ tIp)

−1
(
aβ̃∗ + bg

)
. (21)

Appealing to Theorem 4 again, this means that the nonlinear system is in fact unaffected by our leave-one-out modification
asymptotically, and that both cases have the same solution (ᾱ, σ̄, γ̄, θ̄, τ̄ , r̄) to the nonlinear system (11). Therefore,

x⊤
i β̂−i

d−→ x̃⊤
i Σ (Σ+ tIp)

−1
(
aβ̃∗ + bg

)
∼ N (0, κ2ᾱ2 + σ̄2). (22)

Since g/
√
p and x̃i have the same distribution, from the second equation in the nonlinear system (11) we know that

x̃⊤
i Σ (Σ+ tIp)

−1
x̃i

a.s.−−→ 1

p
g⊤Σ (Σ+ tIp)

−1
g =

γ̄δ

σ̄τ̄
. (23)

All together, this gives us

x⊤
i β̂

p−→ x̃⊤
i Σ (Σ+ tIp)

−1
(
aβ̃∗ + bg

)
− γ̄ℓ′(yi,x

⊤
i β̂) (24)

=⇒ x⊤
i β̂

d−→ Prox
γ̄ℓ(yi,x⊤

i β̂)

(
x⊤
i β̂−i

)
, (25)

which is the stated result.



Jasper Tan, Daniel LeJeune, Blake Mason, Hamid Javadi, Richard G. Baraniuk

D Formal version of Theorem 3 and proof

Theorem 3 is a slightly informal version of the following theorem. The only difference is technical, as we must assume the
convergence of the nonlinear system (11) for part (a). The convergence of MI advantage to 1 of part (b) of Theorem 3 is
implied by part (a) of the following theorem.

Theorem 6. Consider the solution β̂ to the optimization problem in (2). Then

(a) If the result of Theorem 5 holds and the minimum eigenvalue of Σ is lower bounded by a positive constant for sufficienly
small δ, then as δ → 0, Adv(A) → 1.

(b) For the bilevel model in (4), if p/d → ϕ ∈ (1,∞) and d/n converges to a fixed value, then in the limit as λ → ∞,
E(f) is decreasing in ϕ.

This theorem makes claims of two natures: that MI advantage of the adversary goes to 1, and that generalization error is
decreasing. For the former, we will show that the output distributions diverge for train and test points such that it becomes
trivial to distinguish between the two distributions, and for the latter, we will determine the form of the generalization error
and show that it is decreasing in the proposed variable.

D.1 Part (a): membership inference advantage

We will assume the notation and setting from the proof of Theorem 5. When rewriting equations from (11), we will omit
the bars (e.g., γ̄ in the next section) when describing general implications of the equations, and then use bars to describe
conclusions about the unique fixed point solution that characterizes the limiting estimator, which we assumed to exist in
applying Theorem 4.

D.1.1 Growth of γ̄

First, we show that γ̄, the scaling factor of the proximal operator in Theorem 5, tends to infinity as δ → 0+. This will drive
training points to be much different from test points as long as the test point distribution variance doesn’t increase. From
the sixth equation in the nonlinear system (11), since the right hand side is greater than 0 and the fixed point variables are
non-negative, we can conclude that στ > γ. We can combine this with the second equation to yield

γ =
1

p
g⊤Σ (Σ+ λστIp)

−1
g
στ

δ
(26)

=
1

λδp
g⊤
(

1

λστ
Ip +Σ−1

)−1

g (27)

>
1

λδp
g⊤
(

1

λγ
Ip +Σ−1

)−1

g (28)

a.s.−−→ 1

λδp
tr

[(
1

λγ
Ip +Σ−1

)−1
]

(29)

Because the smallest eigenvalue λmin (Σ) > 0, this implies that

λγ >
1

δ

1
1
λγ + 1

λmin (Σ)

=⇒ λγ

λmin (Σ)
>

1

δ
− 1. (30)

Therefore, asymptotically, there exists a constant cγ̄ > 0 such that for sufficiently small δ, we have λγ̄ ≥ cγ̄/δ, so γ̄ → ∞
as δ → 0+.

D.1.2 Vanishing of output variance.

We next argue that κ2ᾱ2 + σ̄2 tends to 0 as δ → 0. We remind the reader that as in the proof of Theorem 5, this is the
variance of x⊤

i β̂−i, which is also equal to the variance of the output for an unseen test point.
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First, we consider the fourth equation in the nonlinear system (11). Applying the first-order optimality condition of the
proximal operator, this is equivalent to

r2 = 2E
[
ρ′(−κZ1)ρ

′ (Proxγρ (καZ1 + σZ2)
)2] ≤ 2. (31)

Similarly, the fifth equation can be written as

θ =
−2

γ
E
[
ρ′′(−κZ1)

(
καZ1 + σZ2 − γρ′

(
Proxγρ (καZ1 + σZ2)

))]
(32)

= 2E
[
ρ′′(−κZ1)ρ

′ (Proxγρ (καZ1 + σZ2)
)]

(33)

≤ 1

2
, (34)

where we have used the fact that the expectation of any odd function of a standard normal variable is zero, and that
ρ′′(u) ≤ 1/4 for all u ∈ R. Thus, both r and θ are upper bounded by constants. Let us now consider the third equation.

κ2α2 + σ2 =
(στ)2

p
(θβ̃∗ +

r√
δ
g)⊤Σ2 (Σ+ λστIp)

−2
(θβ̃∗ +

r√
δ
g) (35)

≤ 1

λ2

(
κ2θ2 +

r2

δ

)
(36)

≤ 1

λ2

(
4κ2 +

1

4δ

)
. (37)

Here the first inequality is obtained by letting στ tend to infinity, and the second is obtained by applying our upper bounds
for θ and r. Therefore, for sufficiently small δ, there exists c1 such that κ2α2 + σ2 ≤ c21/δ.

We now wish to return to (31) and (33) to determine tighter upper bounds. To that end, we first prove the following lemma

Lemma 7. Let Z be a standard normal random variable. For any a0, b0 > 0, there exist δ0 > 0 and c > 0 such that for all
a ≥ a0, b ≤ b0, and 0 < δ < δ0,

Pr

(
Proxaρ/δ

(
bZ√
δ

)
> log (cδ log(1/δ))

)
≤ δ2. (38)

Proof. We begin by observing that is sufficient to prove the claim for a = a0 and b = b0, since the probability is
monotonically decreasing and increasing, respectively, in each variable for sufficiently small δ. By standard Gaussian tail
bounds, for sufficiently small δ,

Pr(Z > 4 log(1/δ)) ≤ δ2. (39)

The proximal operator is a strictly increasing function of Z, so we can determine the bound on its tail by determining an
upper bound on Proxaρ/δ

(
4b log(1/δ))√

δ

)
. The first-order optimality condition for the proximal operator is

w∗ =
4b log(1/δ))√

δ
− a

δ
ρ′(w∗). (40)

It is clear that for sufficiently small δ, w∗ < 0, since ρ′(u) ≥ 1/2 for u ≥ 0. Therefore, since ρ′(u) = eu/(1 + eu), there
exists cδ ∈ (1/2, 1) such that ρ′(w∗) = cδe

w∗
. We can then solve for and bound w∗ for some c > 0 and sufficiently small δ

as

w∗ =
4b log(1/δ))√

δ
−W0

(
acδ
δ

exp

(
4b log(1/δ))√

δ

))
(41)

≤ − log
(acδ

δ

)
+ log

(
4b log(1/δ))√

δ
+ log

(acδ
δ

))
(42)

≤ log(cδ log(1/δ)), (43)

where W0 is the principal branch of the Lambert W function, and the first inequality follows from the lower bound
W0(x) ≥ log x − log log x for x ≥ e. Let δ0 be a sufficiently small so that the above arguments hold, and the claim is
proved.
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Applying Lemma 7 with a0 = cγ̄ and b0 = c1 to (31), we can use the facts that ρ′(u) ≤ 1 and that ρ′(u) ≤ eu to obtain for
some cr > 0

r2 ≤ 2
(
c2rδ

2 log2(1/δ) + δ2
)
. (44)

Thus for some cr̄ > 0, r̄ ≤ cr̄δ log(1/δ) for sufficiently small δ. We then apply Lemma 7 to (33) to similarly obtain for
some cθ > 0

θ ≤ 1

2

(
cθδ log(1/δ) + δ2

)
(45)

Thus for some cθ̄ > 0, θ̄ ≤ cθ̄δ log(1/δ) for sufficiently small δ. Therefore, returning again to (36), there exists some
c2 > 0 such that for sufficiently small δ,

κ2ᾱ2 + σ̄2 ≤ c22δ log
2(1/δ). (46)

Hence the output variance tends to zero as δ → 0+.

D.1.3 Membership inference advantage

We wrap up the proof by proposing two more lemmas for the proximal operator of the logistic loss

Lemma 8. Fix C > 0. For all v such that |v| < C and y ∈ {0, 1},

lim
a→∞

|Proxaℓ(y,·) (v) | = ∞ uniformly, (47)

where ℓ(y, z) = log(1 + exp(z))− yz is the logistic loss.

Proof. The proximal operator Proxaℓ(y,·) (v) is the unique solution w ∈ R to the equation

w = v + a(y − ρ′(w)). (48)

Consider y = 1, and suppose the claim was not true. Then there exists c1 > 0 such that for all a0 > 0, there exists a > a0
and v ∈ (−C,C) such that |w| < c1. Let c2 = ρ′(c1). This implies that

c1 + ac2 > v + a. (49)

Since c2 < 1, this inequality does not hold for any a > a0 if a0 is sufficiently large, leading to a contradiction. The case for
y = 0 is entirely analogous if we make the substitution ρ′(w) = 1− ρ′(−w).

Lemma 9. Let Z be a standard normal random variable. Then for any τ > 0, if an and bn are sequences such that as
n → ∞, an → ∞ and bn → 0, then

lim
n→∞

Pr
(
|Proxanℓ(y,·) (bnZ) | > τ

)
− Pr (|bnZ| > τ) = 1, (50)

Proof. For sufficiently large n, by a standard tail bound for Gaussian variables, with probability at least 1− e−(τ/bn)
2/2, we

know that |bnZ| < τ . Again for sufficiently large n, we know that |Proxanℓ(y,·) (bnZ) | > τ for all |bnZ| < τ by Lemma 8.
Thus,

Pr
(
|Proxanℓ(y,·) (bnZ) | > τ

)
− Pr (|bnZ| > τ) ≥ 1− 2e−(τ/bn)

2/2, (51)

which tends to 1 as n → ∞.

Applying Lemma 9 to our problem, using the fact that γ̄ → ∞ and κ2ᾱ2 + σ̄2 → 0, we see that any adversary that applies
a threshold |f̂(x)| > τ for a fixed threshold τ will achieve MI advantage of 1 as δ → 0. Any loss-based fixed-threshold
adversary inherits this behavior, as for the logistic loss, ℓ(y, f̂(x)) is a monotonically decreasing function of |f̂(x)|, so
thresholding the loss is equivalent to thresholding the magnitude of the model output.
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D.2 Part (b): test accuracy for the bi-level ensemble

In the bi-level ensemble, when applying Theorem 4 for β̃∗ in place of β∗, asympotically, the first three equations in the
nonlinear system (11) become

κ2α =
στθκ2

1 + λστ
ϕ

,

γ =
στ

δ

(
1

ϕ+ λστ
+

ϕ− 1

ϕ+ λστ
η (ϕ− 1)

)
,

κ2α2 + σ2 =
(στθϕκ)2 + (στr)2 ϕ

δ

(ϕ+ λστ)2
+

(στr)2 ϕ
δ (ϕ− 1)

(ϕ+ λστ
η (ϕ− 1))2

.

(52)

As we discussed in the proof of part (a), r and θ are always upper bounded by constants, so as λ → ∞, regardless of the
behavior of στ , the left-hand sides of all three equations tend to zero. For this reason, applying our reformulations of the
proximal operators and taking appropriate limits, the last three equations in the nonlinear system become

r2 =
1

4
,

θ = E [ρ′′(−κZ1)] ,

στ = 4.

(53)

These simplifications largely result from applying ρ′(0) = 1/2 and appealing to symmetry arguments. The final equation
results from the algebraic manipulation

γ

στ
= E

[
2ρ′(−κZ1)

(
1− 1

1 + γρ′′
(
Proxγρ (καZ1 + σZ2)

))] (54)

= E

[
2ρ′(−κZ1)

γρ′′
(
Proxγρ (καZ1 + σZ2)

)
1 + γρ′′

(
Proxγρ (καZ1 + σZ2)

)] . (55)

Now knowing that σ̄τ̄ = 4, we can consider very large λ → ∞ to obtain

α =
θϕ

λ
+ o

(
1
λ

)
,

γ =
2

λδ
+ o

(
1
λ

)
,

κ2α2 + σ2 =
1

λ2

(
(θϕκ)2 +

ϕ

4δ

(
1 +

η2

ϕ− 1

))
+ o

(
1
λ

)
.

(56)

Generalization error equals Pr
(
y ⊕ 1

{
x⊤β̂ > 0

}
= 1
)

, where ⊕ is the exclusive or operator, which by symmetry we can
compute as

Pr
(
y ⊕ 1

{
x⊤β̂ > 0

}
= 1
)
= 2Pr

(
y = 0, ᾱx⊤β∗ + σ̄Z > 0

)
(57)

= 2E
x

[
Pr(y = 0|x⊤β∗)Φ

(
x⊤β∗

σ̄/ᾱ

)]
, (58)

where Φ: R → [0, 1] is the standard normal CDF, and Z is a standard normal random variable. It can be shown that this is
decreasing in α/σ, and from the above, in the limit as λ → ∞,

ᾱ2

σ̄2
=

4θ2 δ
ϕ

1 + η2

ϕ−1

, (59)

which is increasing in ϕ for fixed d/n = δ/ϕ.
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E Proof of Corollary 2

Proof. The generalization error result immediately follows from (58) the previous section, since

κ2 =
∥∥β̃∗∥∥2

2
/p = β∗⊤Σβ∗/p → σ2

β . (60)

For membership advantage, we know from the previous section, Theorem 5, and Theorem 4 that the predictions on training
and test points follow

x⊤
i β̂

d−→ Proxγ̄ℓ(yi,·) (ᾱZi + σ̄W ) , x⊤β̂
d−→ ᾱZ + σ̄W, (61)

where x⊤
i β

∗ d−→ Zi, x⊤β∗ d−→ Z, and W ∼ N (0, 1) is independent of Zi or Z. Here randomness is over the training
dataset, so for a fixed β∗ and xi (or x), we have a fixed Zi (or Z). Suppose the adversary is given some x′ and its (noisy)
training label y′. If x′ (with corresponding Z ′) is not a training point,

µtest(ẑ|x = x′, y = y′) = µtest(ẑ|x = x′) (62)

= µW

(
ẑ − ᾱZ ′

σ̄

)
1

σ̄
. (63)

The first equality is from the independence of the model output and the unused training label, and the second equality comes
by the change of variables formula for scalar random variables in terms of µW , which is a standard normal Gaussian density.

If x′ is a training point, we have the following probability density:

µtrain(ẑ|x = x′, y = y′) = µW

(
gy(ẑ)− ᾱZ ′

σ̄

)
g′y(ẑ)

σ̄
. (64)

Here gy(·) is the inverse of Proxγ̄ℓ(y,·) (·), which by the first-order optimality condition is

gy(z) = z + γ̄(ρ′(z)− y), g′y(z) = 1 + γ̄ρ′′(z). (65)

We remind the reader that ρ′′(z) = ρ′(z)(1 − ρ′(z)). Therefore, the densities can be easily evaluated by numerical
integration.

Since the adversary is given the value of the loss, which is monotonic in f̂(x′), and knows predicted label ŷ(x′), the
adversary is equivalent to an adversary based on f̂(x′) with the densities described above. The optimal adversary is given by

A∗(f,x′, y′) = 1

{
µtrain(f̂(x

′)|x = x′, y = y′) > µtest(f̂(x
′)|x = x′, y = y′)

}
, (66)

and we can compute its MI advantage specific to (x′, y′) as

Adv(A∗, f̂ ;x′, y′) =

∫
R
max {µtrain(z|x = x′, y = y′)− µtest(z|x = x′, y = y′), 0} dz, (67)

Additionally, we can numerically evaluate this integral, and then we can compute the average sample-specific membership
inference advantage as

Adv(A∗, f̂) = E
x′,y′

[
Adv(A∗, f̂ ;x′, y′)

]
, (68)

which we can easily compute by numerical integration over the Gaussian density of Z ′ and the fact that Pr(y′ = 1|x′) =
ρ′(Z ′).

F Train vs. test distribution simulation

To validate our derivation of the sample-specific output distribution, we compute empirical histograms over many trials for
fixed data points and labels. See Figure 7.
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Figure 7: Theoretical densities (solid line) versus empirical histograms of sample-specific output distributions when x′ is a
test (blue) or training (orange) training point. For each training sample (xi, yi), i ∈ {1, 2, 3, 4}, we plot the corresponding
theoretical densities µtest(ẑ|x′ = xi, y

′ = yi) and µtrain(ẑ|x′ = xi, y
′ = yi) as described in Appendix E given Zi = x⊤

i β
∗

for a bi-level ensemble with n/d = 1/2, ϕ = 3, σβ = 50, λ = 0.1, η = 1. The histograms are of the outputs over 500 trials
where n = 500 additional training points are used to train a logistic regression model on bi-level ensemble features either
including or not including (xi, yi). Thus even for problems of real data sizes, the theory matches empirical results.

G Experimental setups

This section provides details on the experimental setups for sections 3.1, 3.2, 4 and figures 2, 3, 4, 5, and 6.

G.1 SVM experimental setup

This subsection provides details on the SVM experiments whose results are shown in Figure 2. For all SVM models, we
use scikit-learn’s SVC class [54]. When the number of SVM parameters is smaller than the number of data points in the
training dataset, we add regularization C = 1, where C is the corresponding regularization parameter in scikit-learn’s SVC
class. Else, we use C = 1020, essentially applying no regularization to yield the hard-margin SVM. The hard-margin SVM
has been studied considerably in the double descent literature [39, 48], especially with regards to its relationship to logistic
regression trained with gradient descent [55, 56].

We use the optimal MI adversary [13], which is a likelihood ratio test, as our MI attack. Suppose we are given two discrete
distributions over values si with probability mass functions qm=0 and qm=1. The optimal adversary A∗ is defined by:

A∗(si) =

{
1 if qm=1(si) > qm=0(si),

0 otherwise
. (69)

For each experiment, the general procedure is as follows. We first generate a D-dimensional data point x0 with binary label
y0, for some D. This is the data point on which MI will be performed. Then, for an integer p, we perform the following
procedure L times. We first generate an n × p training dataset matrix X, for some n, and a corresponding label vector
y. Generally, these are distributed in the same way as (x0, y0). All experiments here are binary classification tasks, so
yi ∈ {−1,+1} for i ∈ {1, 2, ..., n}. We then apply label noise to y: we flip each label yi to the other class with probability
α. Afterwards, we learn an SVM on X and y. We then denote by ŷ0 the signed distance of x0 to the decision hyperplane of
the learned SVM. We collect the ŷ0 of all L learned SVMs into an output vector ŷm=0. We then repeat the same procedure
another L times, but this time, before learning the SVM on X and y, we first replace the first rows X1 = x0 and y1 = y0.
Label noise is never applied to y0. We collect the resulting L signed distances to the learned SVM hyperplanes into the
output vector ŷm=1. We form discrete histograms for both ŷm=0 and ŷm=1 with bin width b. Finally, we perform the
optimal adversary attack on these histograms and measure the corresponding membership advantage. This entire experiment
is repeated for multiple values p to generate Figure 2.

The following subsections provide the distributions of x0, y0, X, and y, as well as the hyperparameters n (number of
data points), D (full data dimensionality), label noise probability α, L (number of samples used to form the histogram),
histogram bin width b, and the set of number of features p investigated for each data model.
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G.1.1 Weak features

The weak features experiment is based on the weak features ensemble discussed in Definition 9 of [39]. In our experiment, we
let D = 1000, x0 ∼ N (1D, ID), and y0 = 1. We perform the experiment for p ∈ {5, 10, 15, ..., 95, 100, 200, 300, ..., 900}
with number of data points n = 100, number of samples L = 20, 000, histogram bin width b = 0.05, and label noise
probability α = 0.2. The n × p training dataset matrix X is generated such that the i’th row Xi ∼ N (zi, Ip), with
zi ∼ N (0, 1). The elements of the label vector y are defined by yi = sign(zi). In essence, each element of a training data
point Xi is the true signal zi (on which the label yi is based) corrupted by Gaussian noise.

G.1.2 Separable Gaussians

The separable Gaussians model is based on synthetic dataset 1 of [47] with some modifications. In our experiment, we set
D = 1000 and generate x0 by sampling its individual elements as:

x0,j ∼
{
N (1, 1) if j ≤ 100

N (0, 1) otherwise
, (70)

with true label y0 = 1. We perform the experiment for p ∈ {10, 20, 30, ..., 90, 100, 150, 200, 250, ..., 1000} with number
of data points n = 100, number of samples L = 10, 000, and histogram bin width b = 0.05.. Each element of the label
vector yi is randomly selected from {−1,+1} with uniform probability. The individual elements (row i and column j) of
the training dataset matrix X are distributed as:

Xi,j ∼
{
N (yi, 1) if j ≤ 100

N (0, 1) otherwise
. (71)

Label noise with probability α = 1 is then applied to y after X is generated. Essentially, the first min(100, p) features of
each data point depend on its true class, and the remaining features are irrelevant (independent of the class). Thus, in the
overparameterized regime, as p increases, we are including more irrelevant features to the model.

G.1.3 Random ReLU features

The random ReLU features model has been studied by multiple papers, such as [48] (section 3) and [57]. In essence, it is a
two-layer ReLU neural network with fixed first-layer random weights. Different from the previous SVM data models, here
x0 is defined differently for each trained SVM model because of the random projections. Instead, there is a latent data vector
z0 that is kept fixed for all experiments and on which MI is performed. We set D = 200, and generate z0 by sampling it
from N (0, ID). We perform the experiment for p ∈ {10, 20, 30, ..., 90, 100, 150, 200, ..., 950} with number of data points
n = 100, number of samples L = 100, 000, histogram bin width b = 0.001, and no label noise. To generate the training
data, a random p×D “featurizer” matrix W is first generated by sampling each row independently from the D-dimensional
unit sphere. Then, an n×D feature data matrix Z is generated by sampling each element iid standard normal. The training
data matrix X = max(0,ZWT ), where the max operation is applied elementwise. The MI data point x0 is defined as
x0 = max(0, z⊤0 W

⊤). Note that since W is sampled for each trained SVM, x0 changes for each experimental run. To
generate the labels of the data points, first, a random vector β is sampled uniformly from the D-dimensional sphere of radius
4 (such that ||β||2 = 4). Then, yi is assigned class 1 with probability 1

1+e−Zβ and class −1 otherwise. The label y0 of x0 is
defined similarly and is assigned class 1 with probability 1

1+e−Zβ and class −1 otherwise. Essentially, the class of a data
point depends only on Z, and the training set consists of random projections of Z that are then passed through the ReLU
operation.

G.1.4 CIFAR10

To experiment on real data, we train SVMs on random projections of a subset of the CIFAR10 dataset [49]. We first define
z0 to be the first image of the training dataset with class “airplane” converted to grayscale and then vectorized. We perform
the experiment for p ∈ {10, 20, 30, ..., 90, 100, 200, 300, ..., 1800, 1900} with number of data points n = 200, number of
samples L = 10, 000, histogram bin width b = 0.05, and no label noise. To generate the n×p data matrix, we first randomly
sample n

2 images uniformly from the “airplane” images of the dataset (excluding x0) and n
2 images from the “automobile”

images of the dataset. We convert the images to grayscale, vectorize them, and collect them into a matrix Z (where each
row is a vectorized image). Since each image is of size 32× 32, the vectorized image is D = 1024 dimensional. We then
sample a p× 1024 random projections matrix W, where each row is sampled uniformly from the 1024-dimensional unit
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sphere. Finally, the data matrix X = ZW⊤. The MI point x0 = z⊤0 W
⊤. The labels of each data point is −1 if it originated

from an “airplane” image and +1 if it originated from an “automobile” image.

G.2 Neural network experimental setup

This subsection provides details on the NN experiments whose results are shown in Figures 3, 4, 5, and 6. Unless otherwise
specified, we use the default hyperparameters and initalizations of Pytorch implementations. The NN experiments are run
on our internal servers with the following GPUs: NVIDIA TITAN X (Pascal), NVIDIA GeForce RTX 2080 Ti, NVIDIA
TITAN RTX, and NVIDIA A100. The choice of which particular GPU is used for each experiment is decided only based on
availability of the GPUs in our internal servers.

G.2.1 The MI attack

The MI attack employed in these experiments is the loss-threshold attack [22, 16, 23]. Given a trained NN f , the data point
of interest z0 = (x0, y0), and a loss function ℓ, the prediction A(f(x0), z0) of this attack is given by:

A(f(x0), y) =

{
1 if ℓ(y0, f(x0)) < τz0

0 otherwise
, (72)

where τz0
is a calibrated threshold. The threshold is learned with the following procedure. Given a full training dataset D,

we train nshadow shadow models on random subsamples of this dataset such that for each z0 in the full dataset, some models
are trained on datasets including z0 and the rest are trained on datasets that do not include z0. The shadow models have the
same architecture and training procedure as the target models that will be attacked. Let nshadow,z0,m=1 and nshadow,z0,m=0

denote the (random) numbers of shadow models trained on z0 and not trained on z0, respectively. We then evaluate all these
shadow models on z0 and collect all loss values of the shadow models trained on z0 into a vector sz0,m=1 and the loss
values of the shadow models not trained on z0 into a vector sz0,m=0. The membership advantage Advshadow of a threshold
τ̂z0

is given by:

Advshadow,z0
=

|{s∈sz0,m=1 : s<τz0}|
nshadow,z0,m=1

− |{s∈sz0,m=0 : s<τz0}|
nshadow,z0,m=0

, (73)

which is simply the difference of the empirical true positive rate and false positive rate. Note that there are many optimal
thresholds that maximize Advshadow. Indeed, if τ̂z0

is one such optimal threshold, then so is any τ ∈ [s∗m=1, s
∗
m=0], where

s∗m=1 is the closest element in sm=1 that is less than τz0 and s∗m=0 is the closest element in sm=0 that is greater than
τz0 . Thus, we set the attack’s calibrated loss threshold as the midpoint: τz0 = 1

2 (s
∗
m=1 + s∗m=0). This sample-based loss

threshold attack, wherein a different threshold is learned for each data point z0, is the attack we use for the CIFAR10 and
Multi30k experiments.

A variation of this attack that we apply for the Purchase100 dataset is the global loss threshold, where τz0
= τ for every z0.

In words, the same threshold value is applied when attacking the model on any data point. The procedure for threshold
calibration is the same, except now sm=1 contains the losses for each of the data points each model was trained on and
sm=0 contains the losses for the data points the models were not trained on.

G.2.2 Evaluation procedure

To evaluate the attack, we first randomly subsample a training dataset S from the full training dataset D and train a target
model on S. Denote by S̄ the data points in D that are not in S. We collect the losses t(z0) of the target model on each
data point z0 in S into a vector tm=1 and the losses of the target model on each data point in S̄ into a vector tm=0. The
membership advantage for the target model is:

Advtarget =
|{t(z0)∈tm=1 : t(z0)<τz0}|

|S| − |{t(z0)∈tm=0 : t(z0)<τz0}|
S̄ . (74)

We repeat this evaluation procedure ntarget times, each time training a new target model on a newly sampled S. The mean
and standard deviation of the membership advantage over all experimental runs is what is reported in the paper figures.

Each shadow and target model is trained for E epochs with checkpoints saved every C epochs, where E and C differ per
dataset. For the experiments in Section 3.1 and Figure 3, the checkpoints for each shadow and target model that achieves the
highest classification accuracy rate on the dataset’s validation set is used for the experiment. The results in Figures 4 and 5
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are obtained for each checkpoint. For each curve in Figure 6, for all shadow and target models, we use the same number of
epochs: the number of epochs (out of the checkpoints acquired) that achieves a membership advantage (Figure 6a) or test
error (6b) closest to the one specified in the figure.

G.2.3 Datasets and architectures

We split each dataset into a “full training dataset” and a validation set. The full training dataset contains all the points on
which membership inference will be performed. Each shadow and target model will be trained on a sample of the full
training dataset such that the full training dataset would always contain both members (training points) and non-members
(test points) for each model. The validation set is only used for calculating classification test error.

Classification on Purchase100. The Purchase100 dataset is based on Kaggle’s “acquire valued shoppers” challenge dataset
subsequently processed by [11]. It contains 197,324 length-600 binary feature vectors, each belonging to 1 of 100 classes.
Each feature vector corresponds to a purchaser, and each entry of the vector corresponds to whether or not a particular
product was purchased by the customer. The 100 classes correspond to purchasing styles. We use the first 180,000 data
points as the full training dataset and the remaining data points for the validation set. We train two-layer neural networks
with hidden dimension w, which we vary. We set nshadow = 50 and ntarget = 50. Each model is trained on a random sample
of 10,000 data points. We use the ADAM optimizer [58] with a learning rate of 0.001 for E = 3000 epochs with checkpoints
saved every V = 20 epochs. For Figure 5, we save checkpoints every V = 1 epoch and only display the results for less
than 3000 epochs for better visualization (each curve uses a different number of epochs, according to which provides best
visualization).

Image classification on CIFAR10. The CIFAR10 dataset [49] contains 60,000 32×32 RGB images, each belonging to 1 of
10 object classes. We use the 50,000 images in the official training dataset as our full training dataset, and the 10,000 images
in the official validation dataset as our validation set. We train ResNet18 models [50] to perform image classification on the
dataset. To vary the models’ widths, we follow [4] and use convolutional layer widths (number of filters) of [w, 2w, 4w, 8w]
for different w values. Note that w = 64 yields the original ResNet18 architecture. We set nshadow = 50 and ntarget = 50,
where each model is trained on a random sample of 25,000 images. We train for 50,000 gradient steps using the ADAM
optimizer [58] with a batch size of 128 (amounting to ≈ 256 epochs through the training dataset), a learning rate of 0.0001
and the cross-entropy loss. Data augmentation is a common technique used in image classification, and so we also employ
random translations of up to 4 pixels and random horizontal flipping during training, as was done by [4].

Language translation on Multi30K. The Multi30K dataset [51] consists of 29,001 pairs of English-German sentences. We
perform English to German translation on these sentences using the Transformer architecture [52]. To vary the models’
widths, we follow [4] and set the encoder/decoder feature sizes to w and the fully connected layers’ dimensions to 4w for
different values of w. We train for 300 epochs using the ADAM optimizer [58] with a learning rate of 0.0001, a batch size
of 128, and the cross-entropy loss over each token. We set nshadow = 15 and ntarget = 15 and train each model on a random
sample of 14, 500 sentence pairs. In calculating the loss of a sentence pair for performing membership inference, we sum
the cross-entropy loss values over all tokens in the sentence and divide by the sentence length.

H Additional Experiments

H.1 Blessing of Dimensionality for Multi30K

In Figure 8, we show the equivalent of Figure 6 in the main paper for the transformer architecture on the Multi30k dataset.
Similarly to the Purchase100 and CIFAR10 datasets, increasing the width of the neural network here improves either privacy
(i.e. decreases membership advantage) or test accuracy when holding the other fixed via proper epoch tuning.

H.2 Global Loss Threshold Attack

In Figures 3, 4, 5, and 6, we used the sample-specific loss threshold attack for CIFAR10 and Multi30K, where a different
loss threshold is learned for each data point. Here, we repeat the same experiments using the global loss threshold, where a
single threshold value is used for all the data points. Note that in the mentioned figures, we already employed the global
loss threshold attack for Purchase100. The trends we observe for the global loss threshold attack are similar to those of the
sample-specific loss threshold attack. The results are shown in Figures 9, 10, 11, and 12. We use nshadow = ntarget = 15 for
both datasets in this experiment.



A Blessing of Dimensionality in Membership Inference through Regularization

64 128 256 512
w (width parameter)

0.72

0.74

0.76

0.78

0.80

0.82

Te
st
Er
ro
r

MI Adv. = 0.79
MI Adv. = 0.85
MI Adv. = 0.9
MI Adv. = 0.95

(a) Test error vs. net width for fixed MI adv.

64 128 256 512
w (width parameter)

0.2

0.4

0.6

0.8

1.0

A
dv
er
sa
ry
’s
M
IA

dv
.

Test Err. = 0.77
Test Err. = 0.79
Test Err. = 0.82
Test Err. = 0.85

(b) MI adv. vs. net width for fixed test error.

Figure 8: Overparameterization with early stopping eliminates the privacy–utility trade-off on Multi30k. This is
similar to Figure 6 in the main body, but performed on the Multi30k dataset with the Transformer architecture. (a) For each
network width, we train the network until it reaches a given MI advantage value. We then plot the test error of the networks.
Observe how test error decreases with parameters at a fixed MI advantage value. Thus, this eliminates the privacy–utility
trade-off. Proper tuning of parameters and epochs together improves model accuracy without damaging its privacy. (b)
Same as (a) but switching the roles of MI advantage and test error.

H.3 Privacy-Utility Trade-offs for DP-SGD on CIFAR10

We perform the same experiment of Figure 5 for CIFAR10 with ResNet18 models trained with DP-SGD [31]. In DP-SGD,
gradients are clipped to a maximum bound, and noise is added to the gradients before the gradient descent step. The model
training procedure is guaranteed to be (ϵ, δ) differentially private for some ϵ and δ according to the amount of noise added and
the number of training epochs. The addition of noise also serves as a form of regularization. We thus obtain the regularization-
wise privacy-utility trade-off for each network width by varying the amount of noise added. Specifically, we set the gradient
clipping bound to 1, the number of epochs to 200, and δ to 1

25000 . For each ϵ ∈ {1, 2, 3, ..., 14, 15, 16, 20, 50, 100} and each
learning rate in {0.1, 0.5, 1, 2, 4, 8}, we train 5 networks with noise added to the gradients such that the procedure is (ϵ, δ)
differentially private. Smaller ϵ parameters yield more noise, which serves as increased regularization. We try different
learning rates as it has been observed that learning rate tuning can affect DP-SGD performance. We apply the global loss
threshold attack and plot the mean test errors and mean membership advantage across the 5 networks for each ϵ and learning
rate for different model widths in Figure 13. For each network width, we only include its Pareto optimal points. That is, we
exclude a point if there exists another point that has both lower test error and lower membership advantage. We observe the
same phenomenon as in Figure 5. Wider networks enjoy better privacy-utility trade-offs than narrower networks.

H.4 TPR at FPR=1%

In Figure 14, we perform the same experiment as in Figure 5 of the main paper, but we instead use the global loss threshold
attack and report the maximum achievable true positive rate (TPR) when the false positive rate (FPR) is constrained to be
at most 1%. For the loss threshold attack, the adversary predicts the data point to be a member if the model’s loss on the
data point is below some τ . When τ is increased, the adversary more frequently predicts the data point as being a member.
This increases the adversary’s TPR, but it will also increase its FPR. For the attack used in Figure 14, we choose the global
thresholds for each individual network that maximizes the TPR under the constraint that the FPR is at most 1%. We refer
readers to [17] for additional discussion on using the metric of TPRs for constrained FPRs. In this metric, we still observe
the same blessing of dimensionality: wider networks can achieve lower test error and lower MI adversary TPRs than their
narrower counterparts.
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Figure 9: Privacy vs. parameters (global loss threshold attack). We repeat the experiment in Figure 3, but now using the
global (instead of sample-specific) loss threshold attack. Similarly, wider networks generally suffer from higher vulnerability
to MI attacks while achieving lower test error.
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Figure 10: Privacy vs. epochs (global loss threshold attack). We repeat the experiment in Figure 4, but now using the
global (instead of sample-specific) loss threshold attack. Again, as epochs increase, membership advantage increases while
test error decreases.
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Figure 11: Trade-offs (global loss threshold attack). We repeat the experiment in Figure 5, but now using the global
(instead of sample-specific) loss threshold attack. We observe again how wider networks are closer to the lower-left portion
of the graph, indicating better privacy and better test accuracy compared to their narrower counterparts.
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Figure 12: Overparameterization with early stopping eliminates the privacy–utility trade-off (global loss threshold).
Similar to Figures 6 and 8, but using the global loss threshold. Increasing the parameters can improve either privacy or test
accuracy when keeping the other fixed (by epoch tuning).
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Figure 13: DP-SGD Trade-off. We train ResNet18 networks on CIFAR-10 with DP-SGD. We sweep through ϵ ∈
{1, 2, 3, ..., 15, 16, 20, 50, 100} and learning rates {0.1, 0.5, 1, 2, 4, 8}. For each ϵ and learning rate, we train 5 networks.
Each point on the plot corresponds to the mean test error and mean MI advantage of the global loss threshold attack over the
5 networks for some ϵ and learning rate. We only include points that are Pareto optimal—we exclude a point if there exists
another point with both lower test error and lower MI advantage. We fix the clipping bound to 1 and the number of epochs
to 200. The plot shows that wider ResNet18 networks achieve better privacy–utility trade-offs than narrower networks when
tuning the DP-SGD noise amount added.
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Figure 14: TPR at FPR=1%. We show the privacy-utility trade-offs similar to Figure 5 but reporting the global loss
threshold’s true positive rate (TPR) using the threshold value that maximizes TPR under the constraint that the false positive
rate ≤ 0.01. We again observe wider networks enjoying better privacy-utility trade-offs than narrower ones.
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